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Abstract
The field of visually-rich document understand-
ing, which involves interacting with visually-
rich documents (whether scanned or born-
digital), is rapidly evolving and still lacks con-
sensus on several key aspects of the processing
pipeline. In this work, we provide a compre-
hensive overview of state-of-the-art approaches,
emphasizing their strengths and limitations,
pointing out the main challenges in the field,
and proposing promising research directions.

1 Introduction

Visually-rich documents (VRDs) combine complex
information, blending text with visual elements like
graphics, diagrams, and tables to convey detailed
content effectively (Ding et al., 2024). Unlike tra-
ditional text documents, VRDs have two main fea-
tures: text associated with typographic details (e.g.,
font, size, style, color), layout that organize in-
formation spatially, and visual elements, such as
charts and figures, which enhance comprehension
(Huang et al., 2024a). These documents can be
either native digital files (e.g., PDFs) containing
searchable text and layout metadata, or scanned
images requiring OCR to extract text and layout.
Visually-rich Document Understanding (VrDU) is
a rapidly evolving field at the intersection of com-
puter vision and natural language processing, tack-
ling both perception (document parsing, i.e. identi-
fication and extraction of objects within the docu-
ment) and interpretation (downstream tasks using
the document features, such as answering questions
or information extraction) (Zhang et al., 2024c).

We provide a comprehensive analysis of how
Visual Document Understanding (VrDU) models
represent visually rich documents (VrDs) and use
these features on downstream tasks, which often
contain multiple elements—such as charts, tables,
figures, and text—and span multiple pages (see Ta-
ble 4 in appendix). Current VrDU approaches typi-
cally follow a two-step pipeline: document parsing

followed by downstream tasks like question an-
swering. We analyze how this two-step pipeline
operates, looking first at how VrDU models encode
VrDs, and then how large language models (LLMs)
decode those features for downstream tasks.

We first take a deep dive into current approaches
for processing and leveraging tokens and bound-
ing boxes (extracted from OCR or PDF metadata)
and linking textual and visual features within docu-
ments. Recent innovations aim to enable LLMs to
handle the 2D positioning of elements in VrDs at
different granularities and to process both textual
and visual features from those documents, thereby
improving their understanding of the structure and
content of VrDs (Section 2).

Additionally, we examine how Large Vision-
Language Models (LVLMs), which are increas-
ingly recognized for their combined perception
and reasoning capabilities, currently dominate the
VrDU domain. Recent innovations focus on balanc-
ing coarse- and fine-grained visual representations
of VrDs while limiting computational cost. De-
spite their growing popularity, we show that current
LVLM architectures are still ill-suited to the spe-
cific challenges of VrDU, particularly in handling
multi-page documents (Section 3).

Next, we analyze how VrDU approaches handle
multi-page documents, exploring recent page-by-
page strategies, strategies relying on sparse atten-
tion mechanisms to maintain connections across
pages, and we finally examine retrieval-augmented
generation (RAG) approaches that reduce the prob-
lem to a single-page context by retrieving relevant
information from other pages, while giving insights
on future promising directions (Section 4).

Finally, we compare the different approaches
to optimally inject those visual information into a
LLM to be processed optimally for downstream
tasks, comparing self-attention and cross-attention-
based approaches (Section 5).
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2 Encoding VrDs from structured
information

VrDs can be represented through three distinct
but interconnected features: text and layout, de-
rived from native digital formats or OCR extraction,
and the overall visual appearance of the document,
obtained by generating a screenshot of the docu-
ment page. The most important layout features are
bounding boxes around text and structural elements
(e.g., tables). The visual modality captures the doc-
ument page appearance, encompassing the overall
structure and visual context of the document as a
whole. The main problematic in VRD encoding
is to represent and merge the information coming
from these three distinct modalities. Table 1 sum-
marizes models from this category that we detail in
this section.

2.1 Integrating the Layout information

The positions and sizes of elements within a doc-
ument can vary in granularity, from individual to-
kens (Garncarek et al., 2020; Xu et al., 2019) to
larger blocks like cells, tables, images, or para-
graphs (Li et al., 2021a,b). This layout information
can be represented within VrDU models in three
ways: through absolute positional embeddings of
the 2D position, as an attention bias / rotation de-
pending on the spatial distance of the tokens, or
directly within the text, as special tokens.

The simplest approach, which does not require
any architectural change, is to include layout infor-
mation as special tokens, directly within the text
(Lu et al., 2024; Mao et al., 2024). The global
text-layout sequence is based on an extended vo-
cabulary V̂ = V ∪[BBOX], where V is the original
text vocabulary. This approach not only increases
the sequence length, overloading the model’s con-
text window, but also limits the ability to capture
complex spatial interactions between elements in
the document.

This is why the VrDU community has focused
on developing optimal methods to incorporate spa-
tial information of tokens within documents. One
way is to extend the 1D absolute positional encod-
ing of tokens in transformers to 2D (see Table 1) by
embedding the spatial coordinates (x, y) of each
token’s bounding box. For example, LayoutLM
(Xu et al., 2019) embeds the discretized x and y
coordinates separately and sums them. DocFormer
(Appalaraju et al., 2021) further includes embed-
dings for the bounding box dimensions (height

and width), while UNITER (Chen et al., 2020)
adds an embedding for the area of each bound-
ing box. These embeddings can be learned or
fixed (function-based, e.g., sinusoidal (Hong et al.,
2022)).

However, absolute positional encoding is lim-
ited, as they are added at the input only (Chen et al.,
2021). Recent models hence apply positional en-
coding directly within the attention mechanism for
improved performance and flexibility. In partic-
ular, they extend the relative positional encoding
(Press et al., 2022; Raffel et al., 2023), applied on
every self-attention layers, to a 2D space. Such
approaches either encode the 2D distance as a bias
term added before the softmax, representing the
horizontal and vertical distances between tokens
within the document (Xu et al., 2022; Powalski
et al., 2021), or as a rotation applied to the queries
and keys vectors, depending on the absolute po-
sition of each token, inspired from 1D-RoPE (Su
et al., 2023), with a rotation of the attention score
depending on the horizontal position of the token
(e.g. position within a table row), and another on
the vertical one (e.g. position within the columns
of the table), with both scores weighted by a gating
model (Li et al., 2024a). Pondering the attention
score with the 2D distance of the tokens is still lim-
ited, as token semantics, like "total" in tables, often
dictate specific spatial interactions beyond mere
positional proximity. To ensure that the model
pays particular attention to tokens located at the
same horizontal position of some meaningful to-
kens (like "total" in a table), ERNIE-Layout (Peng
et al., 2022) introduces three relative position at-
tention biases (disentangled attention), capturing
respectively how the semantic meaning of a token
interacts with its sequential, horizontal and vertical
relative distance to the other token. FormNet (Lee
et al., 2022) goes further in this direction by al-
lowing more complex interactions, using functions
that combine semantic and position information
between tokens.

To conclude, in a world where documents are
increasingly digital-native, with direct access to
text and bounding boxes, enabling LLMs to handle
such structures is crucial. However, the community
has mostly focused on adapting either 1D absolute
positional encodings or relative 1D positional bias
to the 2D space, while little attention has been given
to extending RoPE to 2D—despite most current
models relying on it.

To the best of our knowledge, only a few studies



Model EText EVis EPos ECross DText MP

Interaction of text and visual features within self-attention after modalities concatenation

LayoutLMv2 2022 UniLMv2 ResNeXt-101-FPN emb. tables + attn bias transformer
LayoutXLM 2021 XLM-R ResNeXt-101-FPN emb. tables + attn bias transformer
UNITER 2020 BERT Faster R-CNN emb. tables (7D) transformer
LayoutLMv3 2022 RoBERTa ViT attn bias transformer
DocFormerv2 2023 T5 encoder ViT emb. tables. T5
GRAM 2024 DocFormerv2(2023) DocFormerv2(2023) emb. tables DocFormerv2(2023) ✓
LayoutLLM 2024 LayoutLMv3(2022) LayoutLMv3(2022) LayoutLMv3(2022) Llama-7B
DocLayLLM 2024 LayoutLMv3(2022) LayoutLMv3(2022) LayoutLMv3(2022) Llama3-8BInstruct

Interaction of text and visual features within cross-attention

DocFormer 2021 LayoutLM(2019) ResNet50 emb. tables visual-spatial attn transformer
SelfDoc 2021b Sentence BERT Faster R-CNN emb. tables intra&inter-modal attn transformer
ERNIE-Layout 2022 BERT Faster R-CNN emb. tables Disentangled attn (2021) transformer
HiVT5 2023 T5 encoder DiT (2022) emb. tables VT5 encoder VT5 decoder ✓
DocTr 2023 LayoutLM(2019) DETR (2020) special tokens Deformable DETR (2021) LayoutLM
InstructDr 2024 FlanT5 encoder CLIP VIT-L/14 emb. tables Document-Former FlanT5 ✓
RM-T5 2024a T5 encoder DiT (2022) emb. tables RMT (2022) T5 decoder ✓
Arctic-TILT 2024 T5 encoder U-Net (per RoI) attn bias Tensor Product T5 ✓

Summing aligned text and visual features via ROI-pooling

TILT 2021 T5 encoder U-Net attn bias T5
Pramanik et al. (2022) Longformer ResNet50 + FPN sinusoidal emb. transformer ✓
UDOP 2023 T5 encoder MAE encoder attn bias T5&MAE decoder

Table 1: Comparison of VrDU models handling the three modalities (T+L+V), detailing encoding of text EText,
visuals EVis, and position EPos, fusion layers ECross, decoder DText, and multi-page (MP) support ✓.

focus on the granularity of positional information,
distinguishing between intra-region positions (e.g.,
the position of a cell within a table or a token within
a paragraph) and page-level positions (e.g., the po-
sition of a token or a region within the entire page).
Region-level models fail to capture cross-region
and word-level interactions, while page-level mod-
els (with token-wise positions) suffer from exces-
sive contextualization (Li et al., 2021b). We sug-
gest that combining these two levels of granularity
could enhance performance (Wang et al., 2022).

2.2 Integrating the visual information
In all the works we reviewed, the visual modality
is transmitted as a set of visual “tokens” (vectors),
computed by a visual encoder. Initially based on
CNNs (Xu et al., 2022), these encoders have transi-
tioned to Visual Transformers (ViTs) (Huang et al.,
2022).

Fusing text and visual features for unified doc-
ument encoding is challenging due to the differ-
ences between visual and text tokens (see Table 1).
The integration of the two modalities can be done
locally (per regions or the document) or globally
(within the whole document).

Global modality alignment involves considering
both the visual and textual features of the entire
document rather than specific regions. A simple
method to align those modalities globally involves
concatenating them (Xu et al., 2022). A trans-
former encoder then allows interaction through

standard self-attention mechanisms (Appalaraju
et al., 2023; Huang et al., 2022). However, such ap-
proaches require intensive pretraining for features
(visual and textual) alignment (Huang et al., 2022),
since these two feature types form a unit within
the document, sometimes representing the same
elements (e.g., an image of a piece of text versus
the text itself).

Local modality alignment refers to aligning text
and visual features specifically within localized re-
gions of the document, focusing solely on the text
and visual attributes from those regions. These
regions can be either inferred using visual informa-
tion, i.e. determined by an object detection module
(Carion et al., 2020; Ren et al., 2016) or deter-
mined by the textual information, i.e. considering
the bounding boxes of text tokens (Powalski et al.,
2021). A simple method to locally align modali-
ties involves summing the two representations per
region (Powalski et al., 2021). Note that regions
without associated text only have a vision-only rep-
resentation (Tang et al., 2023). However, this ap-
proach constrains the interaction between visual
and textual modalities, thereby limiting the com-
prehensive understanding of the document region
(Li et al., 2021b).

To capture interactions between textual and vi-
sual features from a region of the document, Self-
Doc (Li et al., 2021b) uses two cross-attentions:
from the visual to textual tokens and vice-versa,



e.g. allowing the textual semantic representation
to be contextualized by visual information such
as color, bold elements, and position. For exam-
ple, a large, bolded, centered text block is likely to
serve as a title or header. By incorporating these
visual cues, the model refines the semantic rep-
resentation of text, ensuring that its meaning is
informed by its visual context within the docu-
ment. Rather than relying on costly cross-attention
for modality fusion and interaction, Arctic-TILT
(Borchmann et al., 2024) introduces a lightweight
attention mechanism after the transformer feed-
forward layer to integrate visual information using
a learnable role bias for text tokens, inspired by
TP-Attention (Schlag et al., 2020).

To conclude, the effect of the visual features,
at least in the way it is utilized in such models
(i.e. enriching the textual features’ representation),
appears small and may primarily introduce redun-
dancy to the textual elements: as shown by Tang
et al. (2023), adding visual features brings little
to no improvement on datasets without images or
visual components, and only marginally enhances
performance on highly visual tasks like Infograph-
icsVQA (Mathew et al., 2021a).

3 Vision-Only Encoding of VrDs

In the previous section, we discussed techniques
that integrate visual and textual information. These
models however remain complex because the seg-
mentation between modalities in a document is
not straightforward and may introduce redundancy,
lead to information loss and require pretraining for
modalities alignment.

Many recent works consider VrDs as images,
which brings the advantage of dealing with a sin-
gle modality, relying on a LLM decoder to handle
different tasks. A summary of this type of model
we detail below is provided in Table 2.

Such approaches, commonly named Large
Visual-Language Models (LVLMs), demand a
highly capable visual encoder to capture all tex-
tual, layout, and visual details within the docu-
ment. However, ViTs themselves are not capa-
ble to capture fine details like text (Zhang et al.,
2025). Indeed, in ViTs, the visual input (e.g., a doc-
ument page) is divided into fixed-size patches, each
becoming a "vision token" (e.g., 14x14 or 16x16
pixels). If patches are too large, they may cover
too much content, like multiple lines or text frag-
ments, and miss fine details. Using smaller patches

or increasing the image resolution creates more
patches, enabling the model to capture finer details
and better encode the document’s textual content
(Lee et al., 2023), but at the cost of efficiency.

Indeed, ViTs have a maximum context size (num-
ber of patches) they can manage (Lee et al., 2023).
This is why research in vision-only VrDU focuses
on architectural modifications to ViTs to enable the
processing of high-resolution images (Section 3.1).
An effective alternative is to use a set of pre-trained
ViTs, each handling a different part of the image,
thereby allowing the processing of high-resolution
images more efficiently (Section 3.2). In this case,
it is necessary to ensure coherence between the
cropped regions of the page.

3.1 Architectural changes to ViT
A number of approaches leverage CNN architec-
tures, which capture local information more effi-
ciently than ViTs due to their intrinsic design based
on convolutions, exploiting locality bias in images.
Dhouib et al. (2023) proposes a sequential architec-
ture combining CNN and ViT components, where
ConvNext blocks are used to extract local features,
and their output is fed into a ViT for modeling
global dependencies.

Due to the complexity of combining two net-
works without losing information, other approaches
(Kim et al., 2022; Blecher et al., 2023) draw in-
spiration from the local window mechanism of
CNNs and incorporate it into ViTs, enabling them
to process numerous patches effectively. These
approaches restrict attention to a local window
of patches with a Swin Transformers (Liu et al.,
2021), which applies self-attention within local
windows, shifting these windows across layers
to efficiently integrate cross-window information.
However, Swin ViTs progressively reduce the reso-
lution of the tokens through token merging steps,
which decrease the number of tokens. DocPedia
(Feng et al., 2024) removes this downsampling step,
keeping the full token resolution throughout the
processing pipeline by leveraging the frequency
domain rather than spatially merging patches as
done in Swin. More precisely, they represent an
image in the frequency domain, using the Discrete
Cosine Transform (Liu et al., 2022a), allowing to
process larger patches without loosing important
high resolution information. However, restricting
the attention to local windows, even if shifted, in-
troduces a locality bias to ViTs, similar to CNNs.

More recent approaches avoid introducing a lo-



Model Res. EVis PEV→DT
DText MP

Encoder: HR image – Decoder: Tiny Decoder

DONUT (Kim et al., 2022) 2560x1920 SwinT (2021) MLP BART
DESSURT (Davis et al., 2022) 1152x768 Attn-Based CNN MLP BART with Swin attn
Pix2Struct (Lee et al., 2023) 1024x1024 ViT MLP BART
SeRum (Cao et al., 2023) 1280x960 SwinT 2021 MLP mBART
Kosmos2.5 (Lv et al., 2024) 224x224 Pix2Struct 2023’s ViT Perceiver Resampler Transformer

Encoder: LR image – Decoder: LLM

LLaVAR (Zhang et al., 2024d) 336x336 CLIP VIT-L/14 MLP Vicuna13B
Unidoc (Feng et al., 2023) 336x336 CLIP VIT-L/14 MLP Vicuna13B
mPLUG-DocOwl (Ye et al., 2023a) 224x224 CLIP VIT-L/14 Visual Abstractor Llama-7b
QwenVL (Bai et al., 2023) 448x448 CLIP-VIT-G/14 Cross-attn layer Qwen-7b

Encoder: HR image – Decoder: LLM thanks to HR image in subimages division (Section 3.2)

SPHINX (Lin et al., 2023) 1344x896
VIT & ConvNext &

MLP Llama2-7B
DINO & QFormer

UREADER (Ye et al., 2023b) 2240x1792 CLIP ViT-L/14 MLP Vicuna13B
Monkey (Li et al., 2024d) 1344x896 CLIP Vit-BigG Perceiver Resampler Qwen-7B
TextMonkey (Liu et al., 2024b) 1344x896 CLIP Vit-BigG Shared Perceiver Resampler Qwen-7B
mPLUG-DocOwl1.5 (Hu et al., 2024a) 2560x1920 EVA-CLIP H-Reducer Llama-7b + MAM
LLaVA-UHD (Xu et al., 2024a) 672x1088 CLIP-ViT-L Shared perceiver Resampler Vicuna-13B
InternLMXC2-4KHD (Dong et al., 2024b) 3840x1600 CLIP-ViT-L PLoRA matrix InternLM2-7B
Idefics2 (Laurençon et al., 2024) 980x980 SigLIP-SO400M MLP Mistral-7B-v0.1
TextHawk (Yu et al., 2024) 1344x1344 SigLIP-SO Perceiver Resampler InternLM-7B
TokenPacker (Li et al., 2024b) 1344x1344 CLIP-ViT-L TokenPacker Vicuna-13B
mPLUG-DocOwl2 (Hu et al., 2024b) 504x504 EVA-CLIP H-Reducer+DocCompressor Llama-7b + MAM ✓

Encoder: HR image – Decoder: LLM thanks to adaptation of ViT to capture fine-grained details (Section 3.1)

DocPedia (Feng et al., 2024) 2560x2560 SwinT 2022b MLP Vicuna-13B
LLaVA-PruMerge (Shang et al., 2024) 336x336 CLIP-ViT MLP Vicuna13B
CogAgent (Hong et al., 2024) 1120x1120 EVA2-CLIP & CogVLM Cross-attn layer & MLP Vicuna-13B
Vary (Wei et al., 2023) 1024x1024 ViTDet & CLIP-ViT-L MLP Qwen-7B
Mini-Gemini (Li et al., 2024c) 2048x2048 ConvNeXt & ViT-L/14 MLP Mistral-7B
LLaVA-HR (Luo et al., 2024) 1024x1024 CLIP-ConvNeXt & ViT-L MLP & MR-Adapter Llama2-7B
TinyChart (Zhang et al., 2024b) 768x768 SigLIP MLP Phi-2
HRVDA (Liu et al., 2024a) 1536x1536 SwinT (2022b) MLP Llama2-7B
DocKylin (Zhang et al., 2024a) 1728x1728 SwinT (2022b) MLP Qwen-7B

Table 2: Comparison of vision-only VrDU models, detailing the input image resolution (Res), visual encoding EVis,
vision-to-text projection PEV→DT

, decoder DText, and multi-page (MP) support ✓.

cality bias to ViTs, instead focusing on removing
redundant information from ViT patches, as docu-
ments often contain a significant amount of redun-
dancies, such as borders, whitespace or decorations.
These methods either use attention scores from
the self-attention mechanism to prune or merge
tokens (e.g., Zhang et al. (2024b); Shang et al.
(2024); Chen et al. (2024)) or employ unsupervised
techniques like Dual-Center K-Means Clustering
(Zhang et al., 2024a) to select tokens. TinyChart
(Zhang et al., 2024b) combines similar tokens after
each ViT layer using methods like average pool-
ing, while DocKylin (Zhang et al., 2024a) employs
similarity-weighted summation based on token co-
sine similarity ensuring that each token contributes
proportionally to its relevance. Other approaches
(Liu et al., 2024a) use a content detection module to
filter out low-relevance areas (e.g., whitespace) and
preserve meaningful regions (e.g., text or tables)
by assigning probabilities to pixels and mapping
them to patches.

3.2 Several ViTs to process partitioned image

Recent works have explored pipelines leveraging
already pretrained ViTs to process high-resolution
images cut into slices. Each ViT handles a specific
portion of the image, and the resulting representa-
tions are combined (sequence of "image tokens")
as the unified document representation.

The way the original image is sliced into subim-
ages is crucial to prevent information loss. Padding
preserves the aspect ratio and prevents deformation
(Li et al., 2024b). Some approaches predict the opti-
mal way to cut the original image, with pre-defined
grid matching (Ye et al., 2023b) and a score func-
tion predicting the best partition (Xu et al., 2024b),
resulting in a varying amount of crop. Whatever
the method, models need to maintain the continuity
between the different subimages representations.

A simple way to do so is through a 2D crop
position encoding, which allows interaction be-
tween local images (Ye et al., 2023b). However,
this approach lacks information continuity between



cropped images. To alleviate salient information
loss due to cropping, Liu et al. (2024b) introduces
a Shifted Window Attention mechanism, enabling
sliding window-based attention across subimage
representations.

A more efficient approach to maintain continuity
between subimages is to leverage a low-resolution
document representation to guide the integration
of subimages. Through a cross-attention layer, To-
kenPacker (Li et al., 2024b), and later mPLUG-
DocOwl2 (Hu et al., 2024b), integrate the high-
resolution representation of regions into the low-
resolution representations using cross-attention,
thus interpolating these low-resolution represen-
tations with its multi-level region cues treated as
reference keys and values to inject their finer infor-
mation to global image view.

To conclude on vision-only approaches, we think
that slicing approaches using local information
from cropped image regions to complement a low-
resolution global view are promising, enabling
compact and efficient representations with signifi-
cantly fewer tokens while maintaining essential lay-
out and semantic details (Hu et al., 2024b). How-
ever, while this type of approach reduces compu-
tational cost for single-page processing, it is not
sufficient to handle multi-page (Hu et al., 2024b).

4 Encoding multi-pages documents

The principal challenge in VrDU is to handle multi-
pages documents. Multi-page documents vary
in length (e.g., 20 pages in SlideVQA (Tanaka
et al., 2023)), amount of tokens per document (e.g.,
21214 tokens per document in MMLongBench-
Doc (Ma et al., 2024c)), and cross-page informa-
tion, i.e. questions requiring information from
several pages of the document (e.g. 2.1% in
DUDE (Landeghem et al., 2023)). To encode multi-
page documents, recent approaches use retrieval-
augmented generation (RAG) techniques (Lewis
et al., 2021) (Section 4.1). Other methods repre-
sent the document page by page (Section 4.2), en-
hanced with inter-page interactions inherited from
long-sequence processing techniques (Section 4.3).

4.1 Retrieval Approach to multi-page

The retrieval approach to multi-page documents
focuses on supplying to the VrDU decoder only the
representation of pages with relevant information.
Several levels can be used to identify the relevant
element from the document: the retriever can ei-

ther predict the entire relevant page (Naidu et al.,
2024; Faysse et al., 2024; Ma et al., 2024b; Cho
et al., 2024) or focus on specific regions within the
page, such as paragraphs or images containing the
elements to answer the question (Xie et al., 2024).

These approaches inherently limit either the in-
teraction between pages or the interaction between
modalities, which does not allow cross-page anal-
ysis (Ma et al., 2024c), not mentioning that they
highly depend on the performance of the retriever.

4.2 Query-based approaches
HiVT5 (Tito et al., 2023), and later InstructDr
(Tanaka et al., 2024), encode each page of the doc-
ument separately, with a specific learnable token
added at the start of each page. HiVT5 (Tito et al.,
2023) uses the specialized [PAGE] tokens to guide
the encoder in summarizing each document page
based on the given question, by processing sepa-
rately each page with the question, encoding all
the relevant information for the next processing
step into the [PAGE] token. These [PAGE] tokens
representations are then concatenated and passed
to the decoder to generate the final answer. To
our knowledge, the only vision-only model de-
signed for multi-page input is mPLUG-DocOwl2
(Hu et al., 2024b), which compresses each page rep-
resentation into 324 tokens and adds a page token
for each page. In vision-only approaches, the token
length of high-resolution images (i.e., document
pages) is typically too large for LLMs to handle
multi-page joint understanding, necessitating ex-
treme compression of each page representation and
thus degrading performance (Hu et al., 2024b).

However, query-based approaches only allow
limited cross-page reasoning, as the long sequence
and diluted information across pages make it chal-
lenging to capture specific inter-page relationships
(Ma et al., 2024c), the page token being not lever-
aged effectively.

4.3 Efficient encoding of multi-pages
Inspired by the ETC Global-Local Attention mech-
anism (Ainslie et al., 2020), GRAM (Blau et al.,
2024) enables global reasoning across multiple
pages through a combination of page-dedicated
layers, which apply self-attention within each page
representation, and document-level layers, which
focus exclusively on page token embeddings in
their attention computations.

Another sparse attention approach is imple-
mented by Arctic-Tilt (Borchmann et al., 2024),



employing a blockwise attention strategy limiting
the attention to a chunk size, allowing to handle up
to 500 pages (about 390k tokens, with 780 tokens
per page on average). This method limits attention
to a smaller, predefined neighborhood (≈2 pages),
reducing complexity from quadratic to linear while
representing cross-page information.

An alternative to sparse attention for efficient
multi-page documents processing is to use a recur-
rent network. RM-T5 (Dong et al., 2024a) uses
a Recurrent Memory Transformer (RMT) (Gupta
et al., 2022) to process multi-page documents se-
quentially, treating each page as part of a sequence.
This allows the model to carry information across
pages by utilizing hidden states from previous
pages. The RMT selectively retains or forgets in-
formation, capturing essential details from each
page for the next encoder, with all memory cells
concatenated for the decoder to generate the final
answer. However, the drawbacks of RNNs are in-
herited, such as the lack of parallelization and the
limited possible interaction of two elements (here,
pages) distant in the sequence.

Overall, our view is that approaches that encode
entire documents using sparse attention techniques,
either global-local or blockwise, represent the fu-
ture of the multi-page field, as they show great
performance on cross-page reasoning (Ma et al.,
2024c) over retrieval ones.

5 Injecting visual features into the LLM

In both approaches for encoding the VrD (struc-
tured encoding in Section 2 versus vision-only en-
coding in Section 3), the representation of the doc-
ument contains visual features. Integrating visual
features into an LLM decoder is not straightforward
because it requires adapting the visual representa-
tion space into an LLM-compatible representation
without losing information, while preserving some
computational efficiency. We detail here how this
integration is done by current VrDU approaches,
and what the future directions for visual features
integration into LLMs are.

5.1 Self-attention based approach

This self-attention approach (Laurençon et al.,
2024) consists in prepending the visual representa-
tion to the prompt, allowing the model to process
both visual features with the prompt together in its
self-attention layers. In such approaches, visual
features are projected into the LLM space via sev-

eral approaches, and are optionally pooled into a
shorter sequence.

Those methods vary in complexity, ranging from
direct linear projection using a single layer to map
visual tokens to the expected input format of the
language model (Lee et al., 2023), which mini-
mizes the number of parameters; convolutional
approaches (Cha et al., 2024), which reduce the
dimensionality of the visual representation; to us-
ing learnable queries (Li et al., 2023a; Bai et al.,
2023), used to retrieve relevant visual tokens.

Since interactions within visual tokens are al-
ready handled by the vision encoder in vision-only
approaches, Ma et al. (2024a) modify the self-
attention mechanism of the LLM by a Composite-
Attention, removing interactions within the LLM
within visual tokens; text tokens act as queries,
with both visual and text tokens serving as keys
and values.

These approaches are limited, considering raw
tokens of the textual prompt and visual tokens from
the document at the same level, without distinguish-
ing between their respective roles or significance.

5.2 Cross-attention based approach
In the cross-attention-based approach, visual hid-
den states encoded by the visual encoder are used
to condition a frozen LLM using freshly initial-
ized cross-attention layers which are interleaved be-
tween the pretrained LLM layers (Laurençon et al.,
2024). Unlike self-attention, cross-attention ap-
proach enables a separate consideration of prompt
and visual document tokens. Flamingo (Alayrac
et al., 2022) pioneered this approach with its Per-
ceiver Resampler, which has since been adopted in
various VrDU models (see Table 2).

An advantage of using cross-attention is that it al-
lows to process longer sequences from the encoder,
and thus to use only high-resolution representa-
tions. For instance, CogAgent (Hong et al., 2024)
employs a high-resolution encoder connected to
the decoder through a cross-attention layer, while
using self-attention with a low resolution version
of the image.

In other words, cross-attention approaches for
integrating visual features into LLMs enable the
query/prompt tokens to explicitly interact with vi-
sual features, effectively leveraging the LLM’s ca-
pabilities.

However, these methods require the introduction
of many new parameters, as cross-attention layers
are interleaved with the LLM’s architecture, signifi-



cantly increasing the overall model size (Laurençon
et al., 2024).

5.3 Pretraining for visual features insertion

Hu et al. (2024a) highlight that, to integrate vi-
sual features into an LLM, VrDU models must be
pretrained on document parsing tasks. Lee et al.
(2023); Wei et al. (2023); Blecher et al. (2023); Hu
et al. (2024a); Kim et al. (2022) exploit the fact that
documents are often generated from a symbolic
source document (e.g. HTML, latex, Markdown,
extended Markdown format for table and charts
or CSV/JSON) to convert document page screen-
shot into structured text for pretraining. Hu et al.
(2024a) implements a multi-format reconstruction
task named Unified Structured Learning.

6 Conclusion and Discussion

While vision-only methods (Section 3) are gain-
ing prominence in recent literature, they face sig-
nificant challenges in balancing coarse and fine-
grained VrD representations. This often results in
excessive computational complexity or compres-
sion issues, making these methods unsuitable for
multi-page document processing without a retriever
(see Table 3). For multi-page understanding, we ar-
gue that multi-modal approaches—combining tex-
tual, visual, and positional features—are more effi-
cient (see Table 3).

In addition to the computational cost aspect, our
view is that the community should prioritize devel-
oping methods to handle text, layout, and visual
elements in documents, as we observe that doc-
uments are increasingly becoming digital-native,
with bounding boxes and text readily accessible.
However, these approaches remain challenging due
to the need for effective alignment across textual
and visual features, and due to the need for LLM
to handle 2D positional information efficiently.

To reduce redundant information between tex-
tual and visual features (Tang et al., 2023) and han-
dle both information in an optimal way, we suggest
focusing on integrating textual features within the
visual representation using cross-attention mech-
anisms (Li et al., 2021b) with text guiding the in-
tegration (query) when visual elements are less
prominent in the document (Borchmann et al.,
2024), and visual features guiding when visual ele-
ments are major in documents.

Our view is that the community should focus
on developing methods to effectively process 2D

Models Doc Info DUDE MPDoc
VQA VQA VQA

T+L+V models (Section 2)

LayoutLMv3 2022 83.4 45.1 20.3² 55.3²
ERNIE-Layout 2022 88.4
DocFormerv2 2023 87.8 48.8 50.8² 76.8²
HiVT5 2023 23.0 62.0
GRAM 2024 86.0 53.4 80.3
LayoutLLM 2024 86.9
DocLayLLM 2024 78.4 40.9
TILT 2021 87.1
UDOP 2023 84.7 47.4
ViTLP 2024 65.9 28.7
Arctic-TILT 2024 90.2 57.0 58.1 81.2

Vision-only models (Section 3)

DONUT 2022 72.1 11.6
DESSURT 2022 63.2
Pix2Struct 2023 76.6 40.0 62.0*
SeRum 2023 77.9
Kosmos2.5 2024 81.1 41.3
LLaVAR 2024d 6.73 12.3
Unidoc 2023 7.70 14.7
DocPedia 2024 47.8 15.2
CogAgent 2024 81.6 44.5
Vary 2023 76.3
mPLUGDoc 2023a 62.2 38.2
QwenVL 2023 65.1 35.4 84.4*
UREADER 2023b 65.4 42.2
Monkey 2024d 66.5 36.1
TextSquare 2024 84.3 51.5
TextMonkey 2024b 73.0 28.6
mPLUGDoc1.5 2024a 82.2 50.7
ILMXC24KHD 2024b 90.0 68.6 56.1* 76.9*
Idefics2 2024 74.0 56.0*
TextHawk 2024 76.4 50.6
TokenPacker 2024b 70.0
mPLUGDoc2 2024b 80.7 46.4 46.8 69.4
HRVDA 2024a 72.1 43.5
DocKylin 2024a 77.3 46.6

Commercial Models

GPT-4V 88.4 75.1
GPT-4o 92.8 54.0 67.0

Table 3: Average Normalized Levenshtein Similar-
ity (ANLS) on single and multi-page VQA. ² de-
notes Single-page-native models concatenating page
representations for multi-page; * denotes models us-
ing a retriever (PDF-Wukong (Xie et al., 2024) for
InternLMXComposer2-4KHD, Naidu et al. (2024) for
Pix2Struct, M3DocRAG (Cho et al., 2024) for QwenVL
and Idefics2). The top-3 scores are in bold.

information, exploring aspects such as granular-
ity, the semantic connection to 2D positions, and
multi-level attention mechanisms—both between
semantically meaningful blocks and within those
blocks, and adapting 2D position encoding to re-
cent approaches (Su et al., 2023). As shown in
Table 3, models that make extensive use of po-
sitional features—such as ERNIE-Layout (Peng
et al., 2022) and Arctic-TILT (Borchmann et al.,
2024) – have the best results. This indicates that
text and layout information are essential for answer-
ing questions, even in complex charts and figures,
making efficient layout handling critical.



7 Limitations

A first limitation of our survey lies in the lack of
consistent evaluation across different techniques.
While we discuss a range of methods—such as 2D
position encoding strategies, approaches for inte-
grating visual and textual information, projectors
between the visual encoder output and the LLM de-
coder, sparse attention approaches for multi-page
document handling, ... – these techniques are eval-
uated in their original experimental setups, which
differ in terms of model architecture, training pro-
tocols, and datasets. As a result, it is challenging to
draw definitive conclusions about which technique
performs best in a given scenario. Although a fairer
and more scientifically rigorous comparison would
require benchmarking all methods under the same
conditions, this was beyond the scope of our survey
due to time and resource limitations.

A further limitation of this survey is that most of
the comparisons in this survey are based on bench-
marks for visual question answering (VQA), while
we overlook several traditional document under-
standing tasks. These tasks include key information
extraction, document layout analysis, document
classification, or reading order prediction (beyond
others), which are essential for many real-world ap-
plications such as automatic form processing, con-
tract analysis, and archival document digitization.
Our focus on VQA benchmarks is primarily mo-
tivated by their widespread use in recent research
as a comprehensive testbed for evaluating VrDU
approaches both in their information extraction and
reasoning capabilities.

Additionally, we focus exclusively on
transformer-based approaches. While this
choice aligns with the current state of the art,
it inevitably excludes earlier yet significant
contributions. For instance, traditional methods
leveraging LSTMs or Gated Recurrent Units have
been widely used in VrDU. More recent work
has also started exploring alternative architectures
such as state space models (Hu et al., 2025).
Graph-Based Relationship Modeling approaches,
representing documents as hierarchical structures
and employing graph neural networks (GNNs) to
model relationships between document elements,
are also extensively adopted by the community
(Dai et al., 2024; Zhang et al., 2022; Li et al.,
2023b). Due to space and scope constraints,
we focused on transformers, which dominate
current research and offer a unified framework for

integrating visual and textual modalities.
Finally, this survey focuses primarily on generic

multi-element documents, such as PDFs and Power-
Point slides, as illustrated in Figure 1 in appendix,
rather than specific document types (e.g., tables,
charts, or diagrams). Our decision to concentrate
on general-purpose documents stems from the de-
sire to provide a broad overview that covers doc-
uments combining multiple data types rather than
diving into domain-specific challenges. Each spe-
cific domain—such as table understanding or chart
interpretation—presents its own unique challenges
and innovations, like cell, row and columns un-
derstanding for table, with approaches modeling
column-wise and row-wise self-attention (Yin et al.,
2020; Deng et al., 2020), derendering tasks for
Charts, with approach converting chart image into
their Matplotlib code (Al-Shetairy et al., 2024) with
their associated JSON/CSV (Liu et al., 2023), or
structure analysis tasks for diagrams, aiming at
linking the legend to the diagram content (Huang
et al., 2024b), which are beyond the scope of this
survey.
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A Example Appendix

A.1 Visual Question Answering datasets
We mainly focused on the Visual Question Answer-
ing (VQA) task in this survey as a benchmark to
compare different models. document-VQA con-
sists of answering a question based on the content
of a document, requiring the model to understand
both visual and textual information to provide an
accurate response.
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Document Characteristics (per document) Questions Characteristics
Datasets type #Pages #Tokens #Tab #Fig Crosspage Unans. Crossdoc #Regions Ans. length

VisualMRC 2021 Wikipedia pages 1.0 151.46 ? ? ✗ ✗ ✗ ✗ 9.55
DocVQA 2021b Industry Documents 1.0 182.8 ? ? ✗ ✗ ✗ ✗ 2.43
InfographicVQA 2021a Posters (Canva, ...) 1.2 217.9 ? ? ✗ ✗ ✗ ✗ 1.6
TAT-DQA 2022 Annual Reports 1.3 550.3 >1 ? ✗ ✗ ✗ ✗ 3.44
MP-DocVQA 2023 Industry Documents 8.3 2026.6 ? ? ✗ ✗ ✗ ✗ 2.2
DUDE 2023 archives, wikimedia 5.7 1831.5 ? ? ✓(2.1%) ✓(12.7%) ✗ ✗ 3.4
SlideVQA 2023 Slides from Slideshare 20.0 2030.5 ? ? ✓(13.9%) ✗ ✗ ✗ ≈1
MMLongBenchDoc 2024c ArXiv, Reports, Tuto 47.5 21214.1 25.4% 20.7% ✓(33.0%) ✓(22.5%) ✗ ✗ 2.8
M3DocVQA 2024 Wikipedia pages 12.2 ? ? ? ✓ ? ✓(2.4k) ✗ ?
M-LongDoc 2024 Manuals, Reports 210.8 120988 71.8 161.1 ✗ ✗ ✗ ✗ 180.3
MMDocBench 2024 Multi 1.0 ? ? ? ✗ ✗ ✗ 2.61 4.1
BoundingDocs 2025 Multi 237k ? ? ? ✓ ✗ ✗ >=1 >=1

Table 4: Overview of open-source Question-Answering VrDU datasets on PDFs or PPTs documents, summarizing
document characteristics (e.g., average pages, tokens, tabs, figures per document) and question characteristics
(e.g., presence of questions requiring cross-pages or cross-documents information, unanswerable questions, and
average answer length). #Region refers to the number of regions identified for answering questions in datasets with
coordinate annotations. Underlined datasets are standard benchmarks used for model comparison in Table 3.

Figure 1: Illustration of the datasets listed in this survey
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